1. General description

High voltage, high speed, planar passivated NPN power switching transistor in a SOT54 (TO-92) plastic package.

2. Features and benefits

- Fast switching
- High voltage capability
- Very low switching and conduction losses

3. Applications

- Compact fluorescent lamps (CFL)
- Electronic lighting ballasts
- Inverters
- Off-line self-oscillating power supplies

4. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>emitter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUJ100LR</td>
<td>TO-92</td>
<td>plastic single-ended leaded (through hole) package; 3 leads</td>
<td>SOT54</td>
</tr>
</tbody>
</table>
6. Limiting values

Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CESM}</td>
<td>collector-emitter peak voltage</td>
<td>V_{BE} = 0 V</td>
<td>-</td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>collector-base voltage</td>
<td>I_{E} = 0 A</td>
<td>-</td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>I_{B} = 0 A</td>
<td>-</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>emitter-base voltage</td>
<td>I_{C} = 0 A; I(Emitter) = 10 mA</td>
<td>-</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>I_{C}</td>
<td>collector current</td>
<td>DC; Fig. 1</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>I_{CM}</td>
<td>peak collector current</td>
<td></td>
<td>-</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>I_{B}</td>
<td>base current</td>
<td>DC</td>
<td>-</td>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td>I_{BM}</td>
<td>peak base current</td>
<td></td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>T_{lead} ≤ 25 °C; Fig. 2</td>
<td>-</td>
<td>2.1</td>
<td>W</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{j}</td>
<td>junction temperature</td>
<td></td>
<td>-</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Fig. 1. Forward bias safe operating area
Fig. 2. Normalized total power dissipation as a function of lead temperature

\[P_{\text{der}} = \frac{P_{\text{tot}}}{P_{\text{tot}(25^\circ \text{C})}} \times 100\% \]
7. Thermal characteristics

Table 4. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th(j-lead)}}$</td>
<td>thermal resistance from junction to lead</td>
<td>Fig. 3</td>
<td></td>
<td></td>
<td>60</td>
<td>K/W</td>
</tr>
<tr>
<td>$R_{\text{th(j-a)}}$</td>
<td>thermal resistance from junction to ambient free air</td>
<td>printed circuit board mounted; lead length 4 mm</td>
<td></td>
<td>150</td>
<td></td>
<td>K/W</td>
</tr>
</tbody>
</table>

Fig. 3. Transient thermal impedance from junction to lead as a function of pulse width
8. Characteristics

Table 5. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CES}</td>
<td>collector-emitter cut-off current (base shorted)</td>
<td>$V_{\text{BE}} = 0 , \text{V}; V_{\text{CE}} = 700 , \text{V}; T_j = 125 ^\circ \text{C}$</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>emitter-base cut-off current (collector open)</td>
<td>$V_{\text{EB}} = 9 , \text{V}; I_{\text{C}} = 0 , \text{A}; T_{\text{lead}} = 25 ^\circ \text{C}$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter sustaining voltage (base open)</td>
<td>$I_{\text{B}} = 0 , \text{A}; I_{\text{C}} = 1 , \text{mA}; L_{\text{C}} = 25 , \text{mH}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 4; Fig. 5}$</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{C}</td>
<td>collector-emitter saturation voltage</td>
<td>$I_{\text{C}} = 0.25 , \text{A}; I_{\text{B}} = 50 , \text{mA}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 6}$</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{C}} = 0.5 , \text{A}; I_{\text{B}} = 125 , \text{mA}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 6}$</td>
<td>-</td>
<td>0.3</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{C}} = 0.75 , \text{A}; I_{\text{B}} = 250 , \text{mA}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 6}$</td>
<td>-</td>
<td>0.4</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>base-emitter saturation voltage</td>
<td>$I_{\text{C}} = 0.25 , \text{A}; I_{\text{B}} = 50 , \text{mA}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 7}$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{C}} = 0.5 , \text{A}; I_{\text{B}} = 125 , \text{mA}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{Fig. 7}$</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>V</td>
</tr>
</tbody>
</table>

Dynamic characteristics

t_f | fall time | $I_{\text{C}} = 1 \, \text{A}; I_{\text{B}} = 200 \, \text{mA}; V_{\text{BB}} = -5 \, \text{V}; L_{\text{B}} = 1 \, \text{mH}; T_{\text{lead}} = 25 ^\circ \text{C}; \text{inductive load}; \text{Fig. 10; Fig. 11}$ | - | 80 | - | ns |

Fig. 4. Test circuit for collector-emitter sustaining voltage

Fig. 5. Oscilloscope display for collector-emitter sustaining voltage test waveform
Fig. 6. Collector-emitter saturation voltage as a function of collector current; typical values

Fig. 7. Base-emitter saturation voltage as a function of collector current; typical values

Fig. 8. DC current gain as a function of collector current; typical values

Fig. 9. DC current gain as a function of collector current; typical values

(1) $T_j = -35 \, ^\circ C$
(2) $T_j = 25 \, ^\circ C$
(3) $T_j = 125 \, ^\circ C$
Fig. 10. Test circuit for inductive load switching

\[V_{CC} = 300 \text{ V}; V_{BB} = -5 \text{ V}; L_C = 200 \mu\text{H}; L_B = 1 \mu\text{H} \]

Fig. 11. Switching times waveforms for inductive load
9. Package outline

Fig. 12. Package outline TO-92 (SOT54)

SOT54 PACKAGE OUTLINE

- **SOT54**
 - Bulk Pack - 412
- **SOT54 LEADS ON CIRCLE**
 - Bulk Pack - 112
- **SOT54 WIDE PITCH**
 - Tape/Reel Pack - 116
 - Ammo Pack - 126
- **SOT54 LEAD BEND L01**
 - Bulk Pack - 412
- **SOT54 LEAD BEND L02**
 - Bulk Pack - 412

Remark: Detailed dimensions refer to POD drawing.
Right to make changes — WeEn Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — WeEn Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an WeEn Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. WeEn Semiconductors and its suppliers accept no liability for inclusion and/or use of WeEn Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. WeEn Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Users are responsible for the design and operation of their applications and products using WeEn Semiconductors products, and WeEn Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WeEn Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WeEn Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using WeEn Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). WeEn does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific WeEn Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer(a) shall use the product without WeEn Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond WeEn Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies WeEn Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond WeEn Semiconductors' standard warranty and WeEn Semiconductors' product specifications.
Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
11. Contents

1. General description..1
2. Features and benefits..1
3. Applications..1
4. Pinning information..1
5. Ordering information..1
6. Limiting values..2
7. Thermal characteristics...4
8. Characteristics..5
9. Package outline..8
10. Legal information..9

© WeEn Semiconductors Co., Ltd. 2016. All rights reserved

For more information, please visit: http://www.ween-semi.com
For sales office addresses, please send an email to: salesaddresses@ween-semi.com

Date of release: 3 October 2016